Munkres Topology Solution: Chapter 8
§48 Baire Spaces
Ex.48.1
Let $X$ equal the countable union $\bigcup B_n$. Show that if $X$ is a nonempty Baire space, at least one of the sets $\overline{B_n}$ has a nonempty interior.
Munkres Topology Solution: Chapter 8
Let $X$ equal the countable union $\bigcup B_n$. Show that if $X$ is a nonempty Baire space, at least one of the sets $\overline{B_n}$ has a nonempty interior.
Munkres Topology Solution: Chapter 7
Let X be a metric space.
(a) Suppose that for some $\epsilon>0$, every $\epsilon$-ball in $X$ has compact closure. Show that $X$ is complete.
(b) Suppose that for each $x\in X$ there is an $\epsilon>0$ such that the ball $B(x,\epsilon)$ has compact closure. Show by means of an example that $X$ need not be complete.
Munkres Topology Solution: Chapter 5
Let $X$ be a space. Let $\mathscr D$ be a collection of subsets of $X$ that is maximal with respect to the finite intersection property.
(a) Show that $x\in \bar D$ for every $D\in\mathscr D$ iff every open nbhd of $x$ belongs to $\mathscr D$. Which implication uses maximality of $\mathscr D$?
(b) Let $D\in\mathscr D$. Show that if $A\supset D$, then $A\in\mathscr D$
(c) Show that if $X$ satisfies the $T_1$ axiom, there is at most one point belonging to $\bigcap_{D\in\mathscr D}\bar D$
Munkres Topology Solution: Preface
Munkres拓扑是最经典的点集拓扑教材之一,但奇怪的是网络上我只找到前四章的解答,至于第五到八章,则没有系统完整的解答,只有MSE等论坛上有分散的问答,查起来有些麻烦。去年因为被嫌弃拓扑学得比较烂,我在上学期挨个做完了Munkres点集拓扑的大部分习题,不过单纯做题并没有让自己拓扑水平得到提升,最近整理解答时还是发现许多内容忘记了。现在把自己上学期写的解答整理出来,方便自己查阅且为后来者学习提供方便。
我只打算写第五到八章的习题解答,至于第一到四章,可以参考Vadim的博客,这上面有非常详细的解答,评论区也有适当的讨论或勘误。
对于解答,再作一些说明: